Altered Ionic Selectivity of the Sodium Channel Revealed by Cysteine Mutations within the Pore

نویسندگان

  • Robert G. Tsushima
  • Ronald A. Li
  • Peter H. Backx
چکیده

To explore the role of pore-lining amino acids in Na+ channel ion-selectivity, pore residues were replaced serially with cysteine in cloned rat skeletal muscle Na+ channels. Ionic selectivity was determined by measuring permeability and ionic current ratios of whole-cell currents in Xenopus oocytes. The rSkM1 channels displayed an ionic selectivity sequence Na+ > Li+ > NH4+ > > Cs+ and were impermeable to divalent cations. Replacement of residues in domain IV showed significantly enhanced current and permeability ratios of NH4+ and K+, and negative shifts in the reversal potentials recorded in the presence of external Na+ solutions when compared to cysteine mutants in domains I, II, and III (except K1237C). Mutants in domain IV showed altered selectivity sequences: W1531C (NH4+ > K+ > Na+ > or = Li+ approximately Cs+), D1532C, and G1533C (Na+ > Li+ > or = NH4+ > K+ > Cs+). Conservative replacement of the aromatic residue in domain IV (W1531) with phenylalanine or tyrosine retained Na+ selectivity of the channel while the alanine mutant (W1531A) reduced ion selectivity. A single mutation within the third pore forming region (K1237C) dramatically altered the selectivity sequence of the rSkM1 channel (NH4+ > K+ > Na+ > or = Li+ approximately Cs+) and was permeable to divalent cations having the selectivity sequence Ca2+ > or = Sr2+ > Mg2+ > Ba2+. Sulfhydryl modification of K1237C, W1531C or D1532C with methanethiosulfonate derivatives that introduce a positively charged ammonium group, large trimethylammonium moiety, or a negatively charged sulfonate group within the pore was ineffective in restoring Na+ selectivity to these channels. Selectivity of D1532C mutants could be largely restored by increasing extracellular pH suggesting altering the ionized state at this position influences selectivity. These data suggest that K1237 in domain III and W1531, D1532, and G1533 in domain IV play a critical role in determining the ionic selectivity of the Na+ channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the selectivity filter of the epithelial sodium channel.

The epithelial sodium channel (ENaC) is composed of three homologous subunits termed alpha, beta, and gamma. Previous studies suggest that selected residues within a hydrophobic region immediately preceding the second membrane-spanning domain of each subunit contribute to the conducting pore of ENaC. We probed the pore of mouse ENaC by systematically mutating all 24 amino acids within this puta...

متن کامل

Exploration of the pore structure of a peptide-gated Na+ channel.

The FMRF-amide-activated sodium channel (FaNaC), a member of the ENaC/Degenerin family, is a homotetramer, each subunit containing two transmembrane segments. We changed independently every residue of the first transmembrane segment (TM1) into a cysteine and tested each position's accessibility to the cysteine covalent reagents MTSET and MTSES. Eleven mutants were accessible to the cationic MTS...

متن کامل

A molecular switch between the outer and the inner vestibules of the voltage-gated Na+ channel

Voltage-gated ion channels are transmembrane proteins that undergo complex conformational changes during their gating transitions. Both functional and structural data from K(+) channels suggest that extracellular and intracellular parts of the pore communicate with each other via a trajectory of interacting amino acids. No crystal structures are available for voltage-gated Na(+) channels, but f...

متن کامل

Interaction between the Pore and a Fast Gate of the Cardiac Sodium Channel

Permeant ions affect a fast gating process observed in human cardiac sodium channels (Townsend, C., H.A. Hartmann, and R. Horn. 1997. J. Gen. Physiol. 110:11-21). Removal of extracellular permeant ions causes a reduction of open probability at positive membrane potentials. These results suggest an intimate relationship between the ion-conducting pore and the gates of the channel. We tested this...

متن کامل

Depth Asymmetries of the Pore-Lining Segments of the Na+ Channel Revealed by Cysteine Mutagenesis

We used serial cysteine mutagenesis to study the structure of the outer vestibule and selectivity region of the voltage-gated Na channel. The voltage dependence of Cd(2+) block enabled us to determine the locations within the electrical field of cysteine-substituted mutants in the P segments of all four domains. The fractional electrical distances of the substituted cysteines were compared with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 109  شماره 

صفحات  -

تاریخ انتشار 1997